[IML.1] Christopher Bishop. Pattern Recognition and Machine Learning.
[IML.2] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.
[IML.3] Andrew Barto, Richard S. Sutton. Reinforcement Learning: An Introduction.
[IML.4] Daniela Witten, Gareth M. James, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning: With Applications in R.
[IML.5] Aaron Courville, Ian Goodfellow, Yoshua Bengio. Deep Learning.
[IML.6] Christopher Bishop. Neural Networks for Pattern Recognition.
[IML.7] Nir Friedman, Daphne Koller. Probabilistic Graphical Models: Principles and Techniques.
[AML.1] Trevor Hastie, Robert Tibshirani, Jerome H. Friedman. The Elements of Statistical Learning.
[AML.2] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
[AML.3] Carl Edward Rasmussen, Christopher K. I. Williams. Gaussian Processes for Machine Learning.
[AML.4] Vladimir Vapnik. The Nature of Statistical Learning Theory.
[AML.5] Shai Ben-David, Shai Shalev-Shwartz. Understanding Machine Learning: From Theory to Algorithms.
[AML.6] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational inference.
[AML.7] Gabriel Peyré, Marco Cuturi. Computational Optimal Transport.
[AML.8] Raman Arora, Sanjeev Arora, Joan Bruna, Nadav Cohen, Simon Du, Rong Ge, Suriya Gunasekar, Chi Jin, Jason Lee, Tengyu Ma, Behnam Neyshabur, Zhao Song. Theory of Deep Learning.
[AML.9] Alekh Agarwal, Nan Jiang, Sham M. Kakade, Wen Sun. Reinforcement Learning: Theory and Algorithms.
[IS.1] Larry A. Wasserman. All of Statistics: A Concise Course in Statistical Inference.
[IS.2] Larry A. Wasserman. All of Nonparametric Statistics.
[IS.3] George Casella, Roger Lee Berger. Statistical Inference.
[IS.4] Aad van der Vaart. Asymptotic Statistics.
[IS.5] Andrew Gelman, Donald Rubin, Aki Vehtari, John Carlin, Hal S. Stern, David Dunson. Bayesian Data Analysis.
[IS.6] Fernando Andres Quintana, Alejandro Jara, Tim Hanson, Peter Muller. Bayesian Nonparametric Data Analysis.
[IS.7] Bradley Efron, Robert Tibshirani. An Introduction to the Bootstrap.
[IS.8] Christian P Robert, George Casella. Introducing Monte Carlo Methods with R.
[IP.1] Sheldon M. Ross. A First Course In Probability.
[IP.2] Y.A. Rozanov. Probability Theory: A Concise Course.
[AS.1] Stephane Boucheron, Gabor Lugosi, Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence.
[AS.2] Roman Vershynin. High dimensional probability. An introduction with applications in Data Science.
[AS.3] Martin J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint.
[AS.4] Trevor Hastie, Robert Tibshirani and Martin J. Wainwright. Statistical Learning with Sparsity: the Lasso and Generalizations.
[AS.5] Aad van der Vaart, Subhashis Ghosal. Fundamentals of Nonparametric Bayesian Inference.
[AS.6] Nils Lid Hjort, Chris Holmes, Peter Müller, Stephen G. Walker. Bayesian Nonparametrics.
[AS.7] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation.
[AP.1] Rick Durrett. Probability: Theory and Examples.
[AP.2] Kai-lai Chung. A Course in Probability Theory.
[AP.3] Cédric Villani. Topics in Optimal Transportation.
[AP.4] Cédric Villani. Optimal Transport: Old and New
[AP.5] David Asher Levin, Yuval Peres, Elizabeth Wilmer. Markov Chains and Mixing Times.
[IO.1] Lieven Vandenberghe, Stephen P. Boyd. Convex Optimization.
[AO.1] Suvrit Sra, Stephen J. Wright, Sebastian Nowozin. Optimization for Machine Learning.
[AO.2] Dimitri Bertsekas. Convex Optimization Algorithms.
[AO.3] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.
[AO.4] Stephen J. Wright, J. Nocedal. Numerical Optimization.